

Advanced Thermal Barrier Coating (TBC) Composite Selected for Increasing Temperature Capability of Turbine Airfoil System

POC: Robert Draper, Glenn Research Center Technical Lead: Robert Miller September 2000

UEET Project: Materials and Structure for High Performance

Relevant Level 1 Milestone: Low conductivity Ceramic TBC Concepts Selected, September 2000

Shown: 1) Identification of chemistry window with greatest potential to meet low conductivity TBC goals

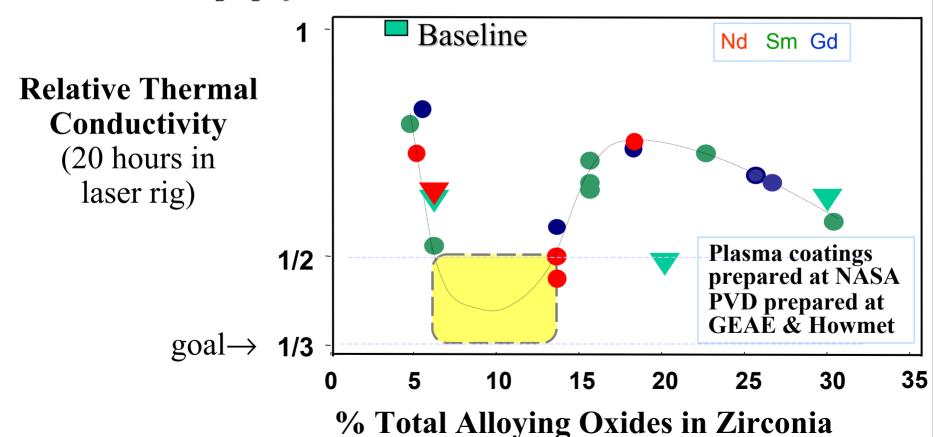
2) Preliminary physical vapor deposition (PVD) results

Accomplishment / Relation to Milestone and ETO:

- Evaluated 33 new chemistries using GRC Plasma Spray Facilities, newly established Powder Processing Facility, and Advanced Laser Rig to simulate engine conditions.
- Established a range of promising chemistries with significantly lower thermal conductivities than current state-of-the-art.
- Determined that PVD processing (current production process for coating blades) appears feasible.

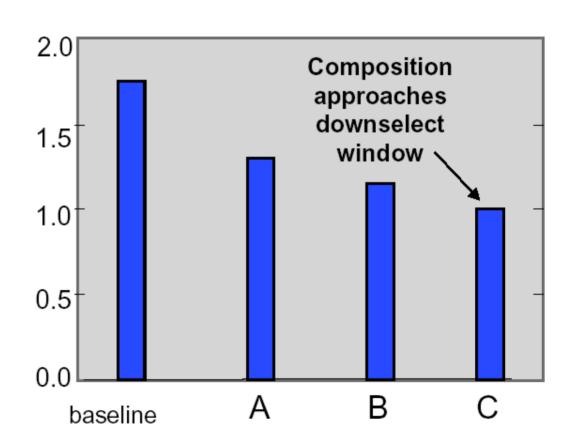
Future Plans:

- Further refine the chemistry window of greatest potential.
- Evaluate alternate concepts, including structural modifications, to maintain low conductivity at long exposure times.
- Develop PVD process at multiple vendors and universities.



Ultra-Efficient Engine Technology Program Turbine Airfoil - Low Conductivity TBC

New Low Conductivity TBC Chemistry Window Identified


- 33 new plasma sprayed chemistries evaluated in 3 rounds
- Rare earth oxides Yb₂O₃ plus Nd₂O₃, Sm₂O₃ or Gd₂O₃ added to ZrO₂-Y₂O₃

Prel. Results for Physical Vapor Deposition (PVD) Process Are Encouraging

Thermal Conductivity after 20 hours, k₂₀, W/m-K

PVD process development for selected compositions centered at GEAE, Howmet, and PSU